MATERIAL SAFETY DATA SHEET

Carbon Black

Section 1: Identification of Substance and Company

1.1 Identification Substance Data

1.1.1 Product Trade Name:
OMCARB™ line grades: S800, S500, S500A, S810, H80, H100, C40, C140, P110, P140, N130.

1.1.2 Registration Number
(REACH REGULATION (EC) No 1907/2006)

01-2119384822-32-0038

1.2 Recommendations on Application:
The product is used as filler in the manufacture of tires, industrial rubber goods, plastic; as a black pigment in polymers, inks and building paints production.

1.3 Manufacturer:
OOO «OMSKTECHUGLEROD»

1.3.1 Address:
644024, Omsk, ul. Pushkina, d. 17, building No 1

1.3.2 Phone/Fax:
+7 (3812) 42-72-78

1.3.3 E-mail:
main@carbonblack.ru

1.3.4 Only Representative
(APPOINTED IN ACCORDANCE WITH ARTICLE 8 OF REGULATION (EC) No 1907/2006):
Techuglerod Kft
1013 Budapest
Pauler utca, 12. 3/1
Hungary
Phone/fax: +36-1-217-68-02
e-mail: techuglerod@gmail.com

1.4 Emergency Phone Number:
+7 (3812) 42-37-66
(Mon.-Fr. 8AM to 5PM, GMT +6:00)
To obtain national emergency service phone number, please contact with the Only representative.

1.5 Supplementary Information:
The manufacturer produces the product at two industrial sites: at address “20, Barabinskaya Street Omsk, Russia, 644049” and at address “61, 40 let VLKSM Street, Volgograd, Russia, 400029”.

Version No 1.3
Revision date: 16/04/12
Substitutes MSDS of: 25/08/11
SECTION 2: HAZARDS IDENTIFICATION

2.1 EMERGENCY OVERVIEW

Moderately hazardous substance to humans. Causes reversible mechanical irritation to eyes and respiratory tract when dust concentration exceeds occupational exposure limits. It is put into category of hard flammable materials (decomposition temperature 300°C). Hazardous products of decomposition are carbon monoxide, carbon dioxide and oxides of sulfur.

2.2 SUBSTANCE CLASSIFICATION

2.2.1 EU:

2.2.2 WHMIS:

D2A

Classified as hazardous.

2.2.3 OSHA:

Inhalation, Eye, Skin

Ingestion of carbon black is not considered a likely route of exposure

2.3 POTENTIAL HEALTH EFFECTS

2.3.1 ROUTES OF EXPOSURE

2.3.2 ACUTE EFFECTS:

2.3.2.1 ACUTE INHALATION

Mechanical irritation of upper respiratory tract. Temporary discomfort to upper respiratory tract may occur when exposures are well above the occupational exposure limit. May be cough and stertorous breathing.

2.3.2.2 ACUTE EYE

High dust concentrations may cause mechanical irritation to eyes.

2.3.2.3 ACUTE SKIN

Long and repeated contact may cause mechanical irritation, soiling, and skin drying.

2.3.2.4 ACUTE INGESTION

No evidence of adverse effects from available data.

2.3.2.5 SENSITIZATION

No effect.

2.3.3 CHRONIC EFFECTS

Long-term exposure (>40 years), when dust concentration in work environment constitutes 1.0 mg/m³, may result in a small loss in one aspect of lung function (FEV1) over a working lifetime.

International Agency for Research on cancer (IARC) listed; Group 2B (possibly carcinogenic to humans).

Not listed as a carcinogen by US National Toxicological Program (NTP), American Conference of Governmental Industrial Hygienists (ACGIH), Occupational safety and health Administration (OSHA) or the European Union.
There are no known human carcinogenic effects related to the PAH content of carbon blacks. Recent research has shown that the PAH content of carbon blacks is not released in biological fluids and thus not available for biological activity.

2.4 POTENTIAL ENVIRONMENTAL EFFECTS

Carbon black is very stable and does not convert in environmental.
Carbon black dust pollutes atmospheric air. When getting into water reservoirs and discharging on landscape it causes mechanical pollution.
See Section 12.

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS

3.1 SUBSTANCE COMPOSITION: Carbon black is a one-component substance (carbon >97%)

3.2 CHEMICAL FORMULA C

3.3 CHEMICAL NAME ACCORDING TO IUPAC Colloidal carbon

3.4 CAS number: 1333-86-4

3.5 EINECS number 215-609-9

SECTION 4: FIRST AID MEASURES

4.1 EMERGENCY MEDICAL ASSISTANCE Is not required.

4.2 OBSERVED SYMPTOMS

4.2.1 INHALATION Cough and stertorous breathing.

4.2.2 SKIN Irritation, xeroderma.

4.2.3 EYES Irritation, excess epiphora.

4.2.4 INGESTION Special effect is not known.

4.3 FIRST AID PROCEDURES

4.3.1 INHALATION Take affected persons out in fresh air. If necessary, restore normal breathing through standard first aid measures.

4.3.2 SKIN Wash skin with mild soap and water. If symptoms develop, seek medical attention.

4.3.3 EYES Rinse eyes thoroughly with large volumes of water keeping eyelid open. If symptoms develop, seek medical attention.
4.3.4 INGESTION

Do not induce vomiting. If conscious, give several glasses of water, rinse mouth with water.

Never give anything by mouth to an unconscious person.

4.4 AVAILABILITY OF SPECIAL MEANS TO RENDER EMERGENCY AND SPECIAL AID ON SITE

Standard first aid set.

SECTION 5: FIRE-FIGHTING MEASURES

5.1 GENERAL DESCRIPTION OF FIRE AND EXPLOSION DANGER

Carbon black is hardly combustible substance. It may not be obvious that carbon black is burning unless the material is stirred and sparks are apparent. Carbon black that has been on fire should be observed closely for at least 48 hours to ensure no smoldering material is present.

Product decomposition temperature >300°C.

Carbon blacks containing more than 8% volatile materials may form an explosive dust-air mixture. Manufactured carbon blacks do not exceed 8% volatile materials content.

5.2 EXTINGUISHING MEDIA

Use foam, carbon dioxide (CO₂), dry chemical, or water fog.

5.3 EXTINGUISHING MEDIA TO AVOID

DO NOT USE high pressure water stream as this may spread burning powder (burning powder will float).

5.4 SPECIAL HAZARDS ARISING FROM THE CHEMICAL AND ITS COMBUSTION PRODUCTS

Special hazards arise from such carbon black combustion products as carbon monoxide (CO) and carbon dioxide (CO₂).

5.5 PROTECTION OF FIGHTERS

Respirator protecting from carbon monoxide (CO) carbon dioxide (CO₂) and sulfur oxides; protective fire fighting gear.
SECTION 6: ACCIDENTAL RELEASE MEASURES

6.1 PERSONAL PRECAUTIONS

Avoid contacting the product with open ignition sources, sparks, high-temperature objects, strong oxidizers (chlorates, bromates and nitrates).

Do not heat the product to a temperature >300°C

Control of the material content in the air in the working area.
Wear personal protective equipment and use respiratory protection.
See Section 8.

6.2 ENVIRONMENTAL PRECAUTIONS

Carbon black poses no significant environmental hazards. As a matter of good practice, minimize contamination of sewage water, soil, groundwater, drainage systems, or bodies of water.

Carbon black is not a hazardous substance under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA, 40 CFR 302), or the Clean Water Act (40 CFR 116), or a hazardous air pollutant under the Clean Air Act Amendments of 1990 (CAAA-90, 40 CFR 63).
See Section 12.

6.3 METHODS FOR CLEANING UP

Small spills should be vacuumed when possible. Dry sweeping is not recommended except with HEPA equipped machinery. A vacuum equipped with HEPA (high efficiency particulate air) filtration is recommended. If necessary, light water spray will reduce dust for dry sweeping but over-wetting may produce very slippery walking surfaces.

Large spills may be shoveled into containers.
See Section 13.
While working use respiratory protection and skin protection from mechanical effect.
See Section 8.
SECTION 7: HANDLING AND STORAGE

7.1 HANDLING

Use local exhaust ventilation in working zones of intensive dusting (e.g. in zone of bags unpacking/packing); use sealed systems for compounding as well as for product processing and conveying; vacuum carbon black dust regularly.

Prevent product contact with open fire sources, sparks, high-temperature objects, strong oxidizers.

Do not heat the product to a temperature $>300^\circ C$

Fine dust may cause electrical shorts and is capable of penetrating electrical equipment unless tightly sealed.

Some carbon black grades are sufficiently electrically non-conductive to allow a build-up of a static charge. In some cases equipment and conveying systems earth is required.

7.2 STORAGE

Carbon black storage conditions must prevent moisture adsorbing and contaminating.

Bin storages should be used for unpacked carbon black.

Particular requirements to storages construction are not established.

Store product under ambient temperature and moisture.

Specific requirements to illumination level are not established

Electrical equipment in warehouses should be explosion-proof.

Electrical equipment with dust penetration risk should be sealed or subjected to periodic clean air purge.

Limitations on stored product volume are not established.

Carbon black shelf life is 12 months of the date of production.

Before entering bins, silos, rail tank cars, tank trucks or other confined spaces used to ship/store carbon black test for adequate oxygen percent content, flammable gases and potential toxic air contaminants (CO, SO$_2$). Follow safe practices when entering confined spaces.

7.2.1 SUBSTANCES AND MATERIALS TO AVOID

Store away from strong oxidizers (chromates, bromates and nitrates).
7.2.2 RECOMMENDED PACKING MATERIALS

Paper and polyethylene valve bags, flexible polypropylene containers of big-bag type.
Use of other containers and packages is permitted provided they prevent product moistening and keep it safe while transporting and storing.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1. OCCUPATIONAL EXPOSURE LIMITS

Carbon black dust concentrations

<table>
<thead>
<tr>
<th>Country</th>
<th>TWA (ACGIH-TLV)</th>
<th>TWA</th>
<th>TWA STEL (15 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>3.5 mg/m³</td>
<td>3.5</td>
<td>7.0 mg/m³</td>
</tr>
<tr>
<td>Brazil</td>
<td>3.5 mg/m³</td>
<td>3.5</td>
<td>7.0 mg/m³</td>
</tr>
<tr>
<td>Belgium</td>
<td>3.5 mg/m³</td>
<td>3.5</td>
<td>7.0 mg/m³</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>3.5 mg/m³</td>
<td>3.5</td>
<td>7.0 mg/m³</td>
</tr>
<tr>
<td>Vietnam</td>
<td>3.5 mg/m³</td>
<td>3.5</td>
<td>7.0 mg/m³</td>
</tr>
<tr>
<td>Great Britain</td>
<td>3.5 mg/m³ OES</td>
<td>7.0</td>
<td>7.0 mg/m³</td>
</tr>
</tbody>
</table>

Germany:

- **MAK:** 1.0 mg/m³ respirable, as annual average
- 4.0 mg/m³ inhalable, as annual average
- **TRGS 900:** 6.0 mg/m³ respirable
- 10 mg/m³ inhalable, as 8-hr TWA

- **Italy:** 3.5 mg/m³ TWA
- **Spain:** 3.5 mg/m³ TWA
- **Korea:** 3.5 mg/m³ TWA
- **China:** 4.0 mg/m³ TWA
- 8.0 mg/m³ TWA STEL (15 min);
- **Canada:** 3.5 mg/m³ TWA
- **Norway:** 3.5 mg/m³ TWA
- **Netherlands:** 3.5 mg/m³ MAC-TGG
- **Russia:** 4.0 mg/m³ TWA
- **USA:** 3.5 mg/m³ TWA (ACGIH-TLV)
- 3.5 mg/m³ TWA (NIOSH-REL)
- 3.5 mg/m³ TWA (OSHA-PEL)
- **Finland:** 3.5 mg/m³ TWA
- 7.0 mg/m³ STEL
- **France:** 3.5 mg/m³ TWA
- **Sweden:** 3.0 mg/m³ TWA
- **Japan – OEL:** 1.0 mg/m³, respirable
- 4.0 mg/m³, total.

TWA – time weighted average, 8 hours;
- **MAC/MAC – maximum allowable concentration;**
- **STEL – short-term exposure limit;**
- **OES – occupational exposure standard;**
- **OEL – occupational exposure limit;**
- **PEL – permissible exposure limit;**
- **TLV – threshold limit value;**
- **REL – recommended exposure limit;**
- **TRGS – Technical Rules for hazardous Substances;**
- **ACGIH – American Conference of Governmental Industrial Hygienists;**
- **NIOSH – National Institute for Occupational
8.2. EXPOSURE CONTROL

Periodic carbon black dust monitoring in work environment.

Use ventilation hoods for controlling exposures to personnel engaged in handling samples.

Use proper process equipment and exhaust ventilation to keep hazardous substances concentrations in work environment to below occupational exposure limit.

8.3. PERSONAL PROTECTION

8.3.1 RESPIRATORY PROTECTION

Use dust mask corresponding to national standards requirements to respiratory protection where dust concentrations are expected to exceed occupational exposure limit.

Use respirators to protect from CO exposure when the product catches fire.

8.3.2 EYES PROTECTION

Safety glasses or goggles are recommended

8.3.3 SKIN PROTECTION

It is recommended to wear usual working clothes for protection from mechanical exposures and general manufacturing contamination; protective mittens.

Spread protective cream on open areas of skin.

8.3.4 PERSONAL HYGIENE

Have meal in specially assigned places.
Wash hands before food intake.
Take a shower after shift termination.
Daily change of working clothes.
Use means for eyes washing in an emergency.
SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

9.1 PHYSICAL STATE
9.1.1 AGREGATE STATE
Solid substance

9.1.2 COLOR
Black

9.1.3 ODOR
Odorless

9.2 PARAMETERS CHARACTERIZING THE MAIN DANGEROUS PRODUCT PROPERTIES
9.2.1 pH OF WATER SOLUTION (concentration: 50g/dm³)
6-9

9.2.2 BOILING POINT/RANGE
Not applicable

9.2.3 MELTING POINT/RANGE
Not applicable

9.2.4 FLASH POINT
Not applicable

9.2.5 FLAMMABILITY
SPONTANEOUS IGNITION TEMPERATURE
>140°C

MINIMUM IGNITION TEMPERATURE (VDI 2263)
- BAM FURNACE
- GODBERT-GREENWALD FURNACE
>500°C
>315°C

MINIMUM IGNITION ENERGY
>10 J

BURN RATE (VDI 2263, EC 84/449)
>45 seconds (not classifiable as “Highly Flammable”, or “Easily Ignitable”)

9.2.6 EXPLOSIVE PROPERTIES
LOWER EXPLOSIVE LIMIT (VDI 2263)
50 g/m³

DUST EXPLOSION CLASS (VDI 2263, EC 84/449)
ST 1

MAXIMUM ABSOLUTE EXPLOSION PRESSURE
10 bar

MAXIMUM RATE OF PRESSURE RISE
30-100 bar/sec

9.2.7 OXIDIZING PROPERTIES
Not applicable

9.2.8 VAPOR PRESSURE
Not applicable

9.2.9 DENSITY AT 20°C
1,7-2,1 g/cm³

9.2.10 SOLUBILITY
Not soluble in water and fats

9.2.11 PARTITION COEFFICIENT (n-OCTANOL/WATER)
Not applicable

9.2.12 VISCOSITY
Not applicable

9.2.13 VAPOR DENSITY
Not applicable

9.2.14 EVAPORATION COEFFICIENT
Not applicable
SECTION 10: STABILITY AND REACTIVITY

10.1 STABILITY
Stable under normal ambient conditions.

10.2 CONDITIONS TO AVOID
Prevent exposure to high temperatures (>300°C) and open flames.

10.3 MATERIALS TO AVOID
Strong oxidizers such as chlorates, bromates and nitrates.

10.4 HAZARDOUS DECOMPOSITION PRODUCTS
Carbon monoxide, carbon dioxide, organic products of decomposition, oxides of sulfur (sulfoxides) form if heated above decomposition temperature (>300°C).

10.5 HAZARDOUS POLYMERIZATION
Will not occur.

SECTION 11: TOXICOLOGICAL INFORMATION

11.1 ACUTE TOXICITY
11.1.1 ORAL TOXICITY
LD₅₀ >8000 mg/kg (rats).

11.1.2 SKIN
Rabbits: non-irritative, index score 0.6/8 (4.0 = severe edema).

11.1.3 EYES
Rabbits: non-irritative, Draize score 10-17/110 (100 = maximally irritating).

11.2 SUBCHRONIC TOXICITY
11.2.1 INHALATION
Rat, inhalation, duration 90 days, NOAEL-1.0 mg/m³ (respirable).

11.3 CHRONIC TOXICITY
11.3.1 ORAL
Rat, oral, duration 2 years. Effect: no tumors.

11.3.2 SKIN
Mouse, dermal, duration 18 months. Effect: no skin tumors.

11.3.3 INHALATION
Rat, inhalation, duration 2 years. Target organ: lungs. Effect: inflammation, fibrosis, tumors.*

*Tumors in the rat lung are considered to be related to the “particle overload phenomenon” rather than to a specific chemical effect of carbon black itself in the lung. These effects in rats have been reported in many studies on other poorly soluble inorganic particles and appear to be rat specific. Tumors have not been observed in other species (i.e., mouse and hamster) for carbon black or other poorly soluble particles under similar circumstances and study conditions.

11.4 SENSITIZATION
No evidence of sensitization was found in animals. No cases of sensitization in humans have been reported.
11.5 CARCINOGENICITY

In 2006 IARC re-affirmed its 1996 classification of carbon black as, Group 2B (possibly carcinogenic to humans). In 1996 IARC concluded, “There is inadequate evidence in humans for the carcinogenicity of carbon black.” Based on rat inhalation studies IARC concluded that there is, “sufficient evidence in experimental animals for the carcinogenicity of carbon black,” IARC’s overall evaluation was that, “Carbon black is possibly carcinogenic to humans (Group 2B”).

11.6 MUTAGENIC EFFECTS

11.6.1 IN VITRO

Carbon black is not suitable to be tested in bacterial (Ames test) and other in vitro systems because of its insolubility. When tested, however, results for carbon black showed no mutagenic effects. Organic solvent extracts of carbon black can, however, contain traces of polycyclic aromatic hydrocarbon (PAHs). A study to examine the bioavailability of these PAHs showed that PAHs are very tightly bound to carbon black and not bioavailable.

11.6.2 IN VIVO

In an experimental investigation, mutational changes in the hprt gene were reported in alveolar epithelial cells in the rat following inhalation exposure to carbon black. This observation is believed to be rat specific and a consequence of “lung overload” which led to chronic inflammation and release of oxygen species. (see chronic toxicity above). This is thus considered to be a secondary genotoxic effect and thus carbon black itself would not be considered to be mutagenic.

11.7 REPRODUCTIVE EFFECTS

No effects have been reported in long-term animal studies.

11.8 EPIDEMIOLOGY

Results of epidemiological studies of carbon black production workers suggest that cumulative exposure to carbon black may result in small decrements in lung function. A recent U.S. respiratory morbidity study suggested a 27 ml decline in FEV1 from a 1 mg/m³ (inhalable fraction) exposure over a 40-year period. An older European investigation suggested an exposure to 1 mg/m³ (inhalable fraction) of carbon black over a 40-year working-lifetime will result in a 48 ml decline in FEV1. However, the estimates from both studies were only of borderline
statistical significance. Normal age related decline over a similar period of time would be approximately 1200 ml.

The relationship between symptoms and exposure to carbon black is even less clear. In the U.S. study, 9% of the highest exposure group (in contrast to 5% of the unexposed group) reported symptoms consistent with chronic bronchitis. In the European study, methodological limitations in the administration of the questionnaire limit the conclusions that can be drawn about reported symptoms. This study, however, indicated a link between carbon black and small opacities on chest films, with negligible effects on lung function.

A study of carbon black workers in the U.K. (Sorahan et al. 2001) found an increased risk of lung cancer in two of the five plants studied; however, the increase was not related to the dose of carbon black. Thus, the authors did not consider the increased risk in lung cancer to be due to carbon black exposure. A German study of carbon black workers at one plant (Wellmann et al. 2006, Morfeld et al. 2006(b)) found a similar increase in lung cancer risk but, like the 2001 U.K. study, found no association with carbon black exposure. In contrast, a large U.S. study (Dell et al. 2006) of 18 plants showed a reduction in lung cancer risk in carbon black production workers. Based upon these studies, the February 2006 Working Group at IARC concluded that the human evidence for carcinogenicity was inadequate (Baan et al. 2006)

11.9 ROUTES OF EXPOSURE
11.9.1 INHALATION

Temporary discomfort to upper respiratory tract may occur when exposures are well above the occupational exposure limit. May be cough and stertorous breathing.

Is not considered a likely route of exposure.

Prolonged or repeated contact may cause mechanical irritation and drying of the skin.

Carbon black is not chemically irritating substance, but it can cause mechanical irritation to eyes like any other dust.

11.9.2 ORAL

Is not considered a likely route of exposure.

11.9.3 SKIN

Prolonged or repeated contact may cause mechanical irritation and drying of the skin.

Carbon black is not chemically irritating substance, but it can cause mechanical irritation to eyes like any other dust.

11.9.4 EYES
SECTION 12: ECOLOGICAL INFORMATION

12.1 ENVIRONMENTAL EXPOSURE
Carbon black release to the environment can cause mechanical pollution.

12.2 ECOTOXICOLOGY

12.2.1 ACUTE FISH TOXICITY
LC50 (96 h) > 1000 mg/l,
Species: Brachydanio rerio (zebra fish),
Method: OECD Guideline 203

12.2.2 ACUTE INVERTEBRATE TOXICITY
EC50 (24 h) > 5600 mg/l.
Species: Daphnia magna (water flea),
Method: OECD Guideline 202

12.2.3 ACUTE ALGAE TOXICITY
EC50 (72 h) > 10,000 mg/l
NOEC 50 > 10,000 mg/l
Species: Scenedesmus subspicatus,
Method: OECD Guideline 201

12.2.4 ACTIVATED SLUDGE
EC0 (3 h) >= 800 mg/l.
Method: DEV L3 (TTC test)

12.3 MOBILITY
Not soluble in water. Not expected to migrate.

12.4 DISTRIBUTION
Not soluble in water. Expected to remain on soil surface.

12.5 BIOACCUMULATION POTENTIAL
Bioaccumulation Potential Bioaccumulation is not expected due to physicochemical properties of the substance.

12.6 OTHER ADVERSE EXPOSURES
Carbon black does not contain components capable to deplete ozone layer.

SECTION 13: DISPOSAL CONSIDERATIONS

13.1 INFORMATION ON SITES AND METHODS OF NEUTRALIZING, UTILIZING AND ELIMINATING WASTE, INCLUDING CONTAINERS (PACKING)
Product waste can be burned in suitable incineration plants or disposed of in a suitable landfill in accordance with the regulations issued by the appropriate federal, provincial, state and local authorities. Waste should not be disposed of by release to sewers. Return reusable containers to manufacturer. Paper bags may be incinerated, recycled or disposed of in appropriate landfill in accordance with national and local laws.

13.2 LEGISLATIVE ACTS

13.2.1 EC
EU Waste Code No 06 13 03 per Commission Decision 2000/532/EC.

13.2.2 USA
Not a hazardous waste under U.S. RCRA, 40 CFR 261.

13.2.3 CANADA
Not a hazardous waste under provincial
SECTION 14: TRANSPORT INFORMATION

14.1 RECOMMENDATIONS ON SAFE HANDLING AND TRANSPORTING

Observe conditions of preserving containers tightness during product transportation.

Packed carbon black should be transported in versatile containers and shipping packages in covered vehicles according to rules of carriage effective for appropriate transport type.

Unpacked pelletized carbon black should be transported in covered hopper cars and tank trucks. Shipped material temperature must not be >60°C.

14.2 TRANSPORT CLASSIFICATION

Carbon black is not restricted for transport by the following regulations:

- European Carriage of Dangerous Goods by Rail (RID), by Road (ADR), or on the Rhine (ADNR).
- International Air Transport Association (IATA).
- International Civil Air Organization-Technical Instructions (ICAO-TI).
- International Maritime Dangerous Goods Code (IMDG).
- United States Department of Transportation Hazardous Materials Regulations (DOT).
- Canadian Transport of Dangerous Goods (TDG).

14.3 U.N. CLASSIFICATION NUMBER

Absent

14.4 CARGO DANGER CLASSIFICATION

Is not classified

14.5 IDENTIFICATION DURING TRANSPORTATION

Non-activated carbon black of mineral origin.

SECTION 15: REGULATORY INFORMATION

15.1 WARNING MARKING IN EC

Symbol is not required.
15.2 GERMANY
WATER HAZARD CLASSIFICATION (WGK)
Non-hazardous to waters.
WGK Number: 1742.

15.3 CANADA
CLASSIFICATION ACCORDING TO WORKPLACE
HAZARDOUS MATERIAL INFORMATION SYSTEM
(WHMIS)
D2A

15.4 USA
American Conference of Governmental
Industrial Hygienists (ACGIH) classifies carbon
black as A4 (not classifiable as human carcinogen).
Carbon black corresponding to three criteria
(aireborne, unbound particiles of respirable
size) was added to the Preposition 65 substances
list (California Safe Drinking Water and Toxics

Carbon black (CAS Number: 1333-86-4) is on the following inventories:
- OKP – All-Russian Classifier of Products: №21 6600;
- TSCA – Toxic Substances Control Act (USA);
- EINECS – European Inventory of Existing Commercial Chemical Substances: № 215-609-9;
- CEPA – Canadian Environmental Protection Act;
- AICS – Australian Inventory of Chemical Substances;
- MITI – (Ministry of International Trade and Industry) List of Existing Chemical Substances: № 10-3074/5-
3328 и № 10-3073/5-5222 (Japan);
- TCC-ECL – Toxic Chemical Control Law - Existing Chemical List: № KE-04882 (Korea);
- PICCS – Philippine Inventory of Chemicals and Chemical Substances;
- ECS – Inventory of Existing Chemical Substances (China).

SECTION 16: OTHER INFORMATION

16.1 POLYCYCLIC AROMATIC HYDROCARBONS
(PAHs) CONTENT
National Institute for Occupational Safety
and Health (NIOSH) recommends in its
normative documents (1978) to measure PAHs
concentration in air, when PAHs content in
carbon black >0.1%.
Manufactured carbon blacks generally
contain less than 0.1% of solvent extractable
poly cyclic aromatic hydrocarbons (PAHs).
Solvent extractable PAHs content depends on
numerous factors including, but not limited to,
the manufacturing process, desired product
specifications, and the analytical procedure used
to measure and identify solvent extractable
materials.

16.2 R-PHRASES, S-PHRASES
S22 (not breath in dust)
S33* (take precautions against static charge)

*Phrase S33 is applicable only to carbon black grades, characterized by enough nonconductivity for static
charge formation when using the product.

16.3 NATIONAL FIRE PROTECTION ASSOCIATION
(NFPA) RATING
Health: 0
Flammability: 1
16.4 HAZARDOUS MATERIALS IDENTIFICATION SYSTEM® (HMIS®)

Reactivity: 0
Health: 1*
Flammability: 1
Physical Hazard: 0

0= minimal; 1=slight; 2=moderate; 3=serious; 4=severe.
*Designates chronic hazard (IARC carbon black classification).

16.5 GENERAL INFORMATION

The data presented in MSDS corresponds to the present state of our knowledge and experience. The users of this product have responsibility for consequences of its application for their specific purposes.

The users of the product should conduct their own researches to determine the objectivity of the presented data and suitability of the material for their specific applications.

Furthermore, none of the data reported here are to be understood as permission, suggestion or recommendation for infringement of any laws and set standards.

MSDS is updated as receiving new information on carbon black safety and health effects. Actual version of MSDS is on company’s web site: www.carbonblack.ru

16.6 MAIN DATA SOURCES

3 IUPAC Recommendations, 1995 (Recommended terminology for the description of carbon as a solid, p.479).
4 IARC Monographs on the evaluation of carcinogenic risks to humans. –France, IARC, 1996.-V.65.-p.149.
16.7 INFORMATION OF CHANGES/AMENDMENTS

Item 1.3 is supplemented with sub-item 1.3.4 introduced in MSDS. (version No 1.1)

The registration number has been inserted (sub-item 1.1.2 of item 1.1). (version No 1.1)

The manufacturer address has been updated (sub-item 1.3.1 of item 1.3). (version No 1.2)

The information concerning emergency phone number has been revised (item 1.4). (version No 1.2)

A legislation reference in sub-item 13.2.1 has been renewed. (version No 1.2)

The new product grades have been added to the trade names list (sub-item 1.1.1 of item 1.1). (version No 1.3)

The manufacturer address has been updated (sub-item 1.3.1 of item 1.3). (version No 1.3)